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A horizontal canal of infinite length and of constant width and depth contains inviscid 
fluid under gravity. The fluid is bounded internally by a submerged horizontal 
cylinder which extends right across the canal and has its generators normal to the 
sidewalls. Suppose that the fluid is set in motion by a surface pressure varying across 
the canal, then some of the energy is radiated to infinity while some of the energy 
is trapped in characteristic modes (bound states) near the cylinder. The existence of 
trapping modes in special cases was shown by Stokes (1846) and Ursell (1951); a 
general treatment, given by Jones (1953), is based on the theory of elliptic partial 
differential equations in unbounded domains. In  the present paper a much simpler 
treatment is given which uses only the theory of bounded symmetric linear operators 
together with Kelvin’s minimum-energy theorem of classical hydrodynamics. 

1. Introduction 
Consider water initially at rest in a rectangular box, and suppose that it is set in 

motion by a sudden localized impulsive pressure acting on the free surface. According 
to the linear theory of water waves in a frictionless fluid (see Lamb 1932, chapter 
9) the subsequent motion is composed of an infinite discrete sum of characteristic 
modes each of which continues to oscillate indefinitely with its own characteristic 
frequency. (We say that the frequency spectrum is discrete.) In a canal of rectangular 
cross-section and infinite length, on the other hand, the waves carry the energy to 
infinity and so the wave motion at  any point decays to zero. (We say that the 
frequency spectrum is continuous.) If such a canal contains fixed submerged bodies 
of finite volume, will the wave motion decay to zero, or will there also be discrete 
modes (trapping modes or bound states) with characteristic frequencies ? The answer 
to this question is in general not known. In  the present paper we shall consider a 
simpler problem : we shall henceforth suppose that the internal boundary of the fluid 
is a horizontal cylinder, with generators perpendicular to the sidewalls and extending 
from wall to  wall. Then it is known that trapping modes can exist in certain cases. 
The fist trapping mode, discovered by Stokes (1846), is a mode on a sloping beach; 
it was shown by Ursell (1951) that a trapping mode exists for a submerged circular 
cylinder of sufficiently small radius; soon afterwards Jones (1953) gave arguments 
based on variational principles that a trapping mode exists for a submerged cylinder 
of any cross-section that is symmetrical about a vertical plane. Jones’s arguments 
are based on the theory of elliptic partial differential equations applied to unbounded 
domains and thus involve profound mathematical concepts. It is the purpose of the 
present work to show that the same problem can be treated much more simply by 
reducing it to the solution of an integral equation with a symmetric kernel. It will 
be shown that the corresponding integral operator is a bounded symmetric operator 
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with a spectrum that is partly continuous and partly discrete. The existence of a 
trapping mode for a cylinder of any cross-section then follows from the corresponding 
result for a circular cross-section of small radius by use of a variational principle 
which is in fact Kelvin's minimum-energy theorem of classical hydrodynamics. 

2. Statement of the problem 
To simplify the problem we shall suppose initially that the fluid is of infinite depth; 

the modifications required for finite constant depth will be considered in $6 below. 
It is supposed that the fluid, which is bounded above by a free surface and bounded 
laterally by parallel vertical sidewalls, is bounded internally by a fixed submerged 
horizontal cylinder extending from one sidewall to the other. Rectangular Cartesian 
coordinates are taken so that the horizontal mean free surface is the plane y = 0 ; the 
y-axis is taken so that the y-coordinate increases with depth. The z-axis is taken 
parallel to the horizontal generators of the cylinder (the sidewalls are z = 0 and 
z = n/k), and the z-axis is taken perpendicular to the y-axis and the z-axis. The curve 
of intersection of the submerged cylinder with any plane z = const. is denoted by C. 
We shall consider small irrotational fluid motions which are periodic in time; thus 
we consider velocity potentials of the form 41(z, y) cos kz elw1, where @x, y) satisfies 
the modified Helmholtz equation 

in the part of the half-plane y > 0 lying outside the curve C. (Solutions of (2.1) will 
be described as Helmholtz potentials.) On the free surface the condition of constant 
pressure takes the form 

Kp+- %J = 0 when y = 0, 
aY 

where K = w 2 / g ;  on the fixed curve C the normal velocity vanishes, i.e. 

% = o  onC. 
an 

We shall be concerned with Helmholtz potentials describing trapping modes (also 
known as bound states) which are modes of finite total energy and which thus satisfy 

It is evident that trapping modes can exist only for certain characteristic frequencies 
w ,  i.e. certain characteristic values of K, which will depend on the curve C and the 
wavenumber k. As was stated in $ 1, trapping modes were discovered by Stokes (1846) 
who showed that on a sloping beach of angle a there is a trapping mode given by 

4)(z, y) = exp ( - kz cos a - ky sin a), 

where the angular frequency o is given by 

w 2 

9 
K = - =  ksina.  

Ursell(l952) showed that the Stokes mode on a sloping beach is only the fist member 
of a family: for small angles a there are several modes, the number of modes is finite 
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and increases when u decreases. In  the present work we shall be concerned only with 
mathematical aspects and we shall need to refer to only a few of the many other 
papers on trapping modes and edge waves that have been published since 1953. 

It is instructive now to recall the distinct methods used by Ursell(1951) and Jones 
(1953) to establish the existence of a trapping mode. We note that the equations and 
boundary conditions involve two parameters K and k ; we investigate trapping modes 
for which K and k are real, and 0 < K < k. 

(i) Ursell (1951), using Helmholtz multipoles satisfying the free-surface condition 
(2.2), reduced the problem of a submerged circle to the solution of a homogeneous 
Fredholm system of equations of the second kind, of the form 

where 

This system can be solved by infinite determinants and has a non-trivial solution if 
and only if its infinite determinant vanishes, i.e. if 

det (a,, +A,,(K, k ) )  = 0, (2.4) 

in an obvious notation. When k is kept fixed it was found that this determinant has 
a real root K near k when the radius of the circle is sufficiently small. The coefficients 
A,,(K, k) are however very complicated, and nothing is known analytically about 
other roots. (The problem has recently been studied numerically by McIver & Evans 
1985). Alternatively the potential could have been represented by a distribution of 
Helmholtz sources satisfying the free-surface condition (cf. the Appendices at the end 
of this paper). This represents a trapping-mode potential if the source strength 
satisfies a homogeneous Fredholm equation of the second kind, i.e. if the Fredholm 
determinant vanishes. This alternative treatment is applicable to boundary curves 
C other than circles; for circles it is equivalent to the treatment by multipoles and 
infinite determinants. 

(ii) Jones (1953) treated the parameter K as fixed and the parameter k2 as an 
eigenvalue to be determined. The problem then becomes an eigenvalue problem in 
an appropriate Hilbert space for the Helmholtz equation of acoustics. (In fact, most 
of Jones’s paper is concerned with problems of acoustics.) The corresponding operator 
is semibounded and self-adjoint; its spectrum is real, consisting of a continuous 
spectrum with values of kB extending from P to - co, and of a discrete spectrum 
above P. Jones then shows that the discrete spectrum contains at least one point 
for every submerged boundary curve C symmetrical about x = 0. When there is more 
than one eigenvalue the corresponding trapping modes have different values of k2 and 
therefore different lateral wavenumbers and thus refer to  different geometrical 
configurations. In  his work Jones uses the difficult spectral theory of unbounded 
operators applied to partial differential equations in unbounded domains, together 
with variational methods which are applicable when the eigenparameter appears in 
the differential equation but not in the boundary conditions. 

In the present paper we shall not use such deep results. The parameter k2 will be 
kept fixed and the parameter K will be the eigenparameter. It will be sufficient to 
use the spectral theory of bounded symmetric linear operators together with Kelvin’s 
minimum-energy theorem of classical hydrodynamics. 
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3. Applications of Kelvin’s minimum-energy theorem 
In a given domain occupied by an incompressible fluid consider all those motions 

that have a prescribed normal velocity on the boundary. Kelvin’s theorem (Lamb 
1932, 945) states that of all these motions the irrotational motion has the smallest 
kinetic energy. More precisely, the difference between the energy of the irrotational 
motion and the energy of any other motion is equal to the energy of the difference 
motion. Several applications of this theorem will now be given, which will be of use 
to us later, in the proofs of Theorems 4.2, 5.1 and 5.3. 

(i) Consider two Helmholtz potentials p(l)(z ,  y) andqJ2)(z, y) which satisfy the same 
boundary condition 

on the mean free surface y = 0. For j = 1,2  suppose that the potential p(i) satisfies 
the boundary condition 

( i) !k = 0 on the internal boundary C(J). (3.2) an 

Let the corresponding fluid domains be denoted by D(l) and D(2).  Suppose now that 
D(1) =I so that C(2) encloses C(l), and consider line integrals of the form 

E ( p  D )  = -1 cpgds taken over the boundary of D 
aD 

P P  

We note that E(p,  D )  is proportional to the kinetic energy. In particular, 

where the integral is taken along y = 0. 
We also note that we can write E(#2),  D(2))  = E(&), D(l)) ,  where 

cpg) = g j 2 )  in D(Q, 

p?) = 0 in D(1) - D(2) ; 

thus #:) is now defined in the same fluid domain D(l) as q(l) and has the same normal 
velocity on the boundary of D(l).  However, although pp) is irrotational in D2) and 
in D(l) the tangential velocity is discontinuous along the curve C(2) inside D(l).  
If Kelvin’s theorem can be applied to p(l) and to the discontinuous motion 
represented by $2) we can conclude that E ( F ( ~ ) , D ( ~ ) )  > E(p(l) ,D(l)) .  This will now 
be verified by a direct calculation. 

THEOREM 3.1. E ( C $ ~ ) , D ( ~ ) )  > E(#l) ,D(l)) .  
Proof. Consider the expression 

E,, = E(cp(2), D(2))-E(q(l) ,  D(l))--E(#2) - # I ) ,  D(Z))-E(v(l) ,  D(21)), 
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= D(l)-D(,)  is the annular domain bounded by C(l) and C(,),  and where where 
the last two terms represent the energy of the difference motion. Then 

where e.g. C!qP)/an,, denotes the normal gradient into the domain 
boundary conditions (3.1) and (3.2) we obtain 

On using the 

from Green's theorem 
m 

- (p-Q)(1))v(x)dz,  
- I, 

whence E,, = 0. Thus 

E(#,), = I#($'), D(')) +E($,)-Q)('), D(')) + E(#'), D(")) 

> E ( p ,  D(1)). 

This concludes the proof of Theorem 3.1. 
(ii) Suppose now that the fluid domain D is bounded internally by the curve C 

which lies between the vertical lines x = a and z = b where a < b. Suppose that v(x) 
is a function such that 

W JI, Iv(x)12 dx < 00. 

In  the domain D define the Helmholtz potential Q)(z, y )  satisfying +/an = 0 on C,  
and also &p/ay = v(x) when -m < x < 00 and y = 0. We now introduce additional 
constraints along x = a and z = b. Let D(l),  D(,), denote the parts of D in which 
- 00 < x < a ,  a < z < b, b < x < 00 respectively. In  the domain define the 
potential g P ( x ,  y) satisfying a$l)/ax = 0 when z = a, and also a#l)/ay = v(x) when 
- 00 < x < a and y = 0; in the domain D@) define the potential t$,)(z, y )  satisfying 
W 2 ) / a n  = 0 on C,  V2)/ax = 0 when x = a and x = b, and also W 2 ) / a y  = w(x) when 
a < x < b and y = 0; in the domain D3) define the potential CpL3)'(z, y )  satisfying 
W 3 ) / a x  = 0 when x = b, and also C?@)/ay = v(x) when b < x < 00 and y = 0. Then 
we have 
THEOREM 3.2. E(v ,D)  < E ( ~ 1 ) , D ( 1 ) ) + E ( ~ 2 ) , D ( 2 ) ) + E ( ~ 3 ) , D ( 3 ) ) .  
Proof. Consider the expression 

El,, = E ( f p ,  D(1)) +E(@', D@)) +E(#3', D(3))-E(qY, D )  

-E( t$ l ) -q ,  D ( l ) ) - E ( I p - v ,  D(2))-E(P)(3)-Q), D(3)). 
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By an argument similar to the proof of Theorem 3.1 it can then be shown that 
E 

123. 
(111) Let p1(x, y) denote the same Helmholtz potential as in the last section. Suppose 

now that the curve C lies below the line y = 1 > 0, and denote by the strip 
- co < z < co, 0 < y < 1. In  the domain define the potential Q;F4)(z, y) satisfying 
W 4 p y  = 0 when -co < z < co and y = 1, and 3 p / a y  = v(z) when --oo < 2 < 00 

and y = 0. 

= 0. The details are omitted. 

Then we have 
THEOREM 3.3. E(q, D) < E(@),  D(,)). 
Proof. Consider the expression 

E4 = E(@’, D(,))-E(p,  D)-E(Q;F4’-q,0(4))-E(~,D-0(4)). 

By an argument similar to the proof of Theorem 3.1 it can then be shown that E, = 0. 
The details are omitted. 

4. The integral operator and its spectrum 
is then known 

to be exponentially small a t  co (Urselll968). In  the customary notation we shall write 
f(z) EL,( - co, co) to indicate that 

We shall look for trapping modes such that K < k; the potential 

m 

and introduce the scalar product 

where 9(x) denotes the complex conjugate of g(z). 
Consider the potential 

where FE L, and where g is the Green function defined in Appendix A. Then evidently 
@ is a Helmholtz potential satisfying a@/& = 0 on C, and it is easy to see from the 
definition of the Green function g that 

a@ 
aY 
- = v(z) when y = 0. 

The potential @(z, y; q,) will be a trapping-mode potential if for a certain value of 
K we have 

a@ 
aY 

K @ + -  = 0 when y = 0, 

i.e. 

Let us write A = K-’ and define the operator & by the equation 

m 

(4.3) 
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then the integral equation (4.2) takes the form 

( T , - A l )  wo = 0; 

we wish to prove the existence of discrete eigenvalues A,, A,, . . . and eigenfunctions 

The familiar Fredholm theory is not applicable to the integral equation which can 
nevertheless be fully treated because, as we shall see, the operator T, is symmetric, 
positive and bounded, i.e. we have 

g @ , O ;  690; C )  = g(5,O; 290; C )  (4.4) 

and 0 < (T, @, v) < M&, 4 (4.5) 

w 1 ( 2 ) ,  %(4, ' * ' EL$. 

for some constant M ,  and all v E L,. By definition the spectrum of the operator T, 
consists of those values of h for which the equation 

(T,-Al)u = w (4.6) 

does not have a unique solution U E L ,  for arbitrary WEL,; discrete points of the 
spectrum correspond to trapping modes. 

THEOREM 4.1. The real kernel g ( & , O ;  E,,O; C )  is symmetric, i.e. the operator T, is 
symmetric. 

Proof. Apply Green's theorem 

to the Helmholtz potentials 

and 

over the boundary of the domain D indented at (.El, 0) and (E,, 0). The integrand 
vanishes except at the indentations where it gives 

(pl(%, y )  = g(x ,  Y ;  E l ,  0; C )  

.(x, Y) = g ( 2 ,  Y; 62, 0; C )  

g(E1,O ; 5820; C )  = A E , ,  0; 5120 ; C )  

Thus (T,w,v) = (v,T,v).  

MC. 

THEOREM 4.2. The operator T, is bounded, i.e. (T, w, w) < Mc(w, v) for some constant 

Proof. The scalar product (T, w, w) is the quantity denoted by I#@, D) in $3 above. 
By Theorem 3.3 it is sufficient to prove that (T, w, w) = I)(*)) < M,(w, w) for some 
constant M,, where @)(x, y )  is the Helmholtz potential which is defined in the strip 
- 00 < x < 00, 0 < y < 1, and which satisfies the boundary conditions 

* = w(z) when y = 0, 
aY 

-- w4' - 0 when y = 1 .  
aY 

This can be solved by Fourier transforms, as follows. Write 

~ ( v ,  y )  = J m  q44)(x, y )  e*vscix, 
--cQ 

(4.7) 

(4.8) 
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then 

after two integrations by parts, 

whence @(v, y) = A ( v )  cosh{(Z-y)(k2+v2)i}, from (4.8). From (4.7) we have 

= (k2+v2)@, 

OD 

a@(v,O)/ay = -A(v)(k2+v2)i sinh{Z(k2+v2)i} = I-,w(x) eiuZdx = W(v) ,  

@(” ’) = - (k2 + v2)i sinh {l(k2 + v2$} 

say, whence 
W( U) cash { (1 - y) (k2 + v2)i} 

W ( v )  coth {Z(k2 + v2)):}. 
( k2 + v2)i 

and in particular @(v,O)  = - 

by Parseval’s theorem, 
l a  dv 

( k2 + v2)i ’ =- IW(v)I2 coth{Z(k2+v2)i} 
2n: -a 

a 
and similarly (w, V )  = 1 I W( v)12 I dv. 2x -a 

Also 
coth {Z(k2+ u2))t} 1 

(k2 + v2)i k 
< - coth kl 

for all real v, and it follows at once that 

1 
k 

(T, V ,  V )  < (T, V ,  V) < - coth kZ ( v ,  v). (4.9) 

This completes the proof of Theorem 4.2. 

for k-‘ < h < M,. 
THEOREM 4.3. The spectrum of T, is real, continuous for 0 < A < k-l and discrete 

Proof. We note from the equation 

(4.10) 

that T, is positive. Since T, is symmetric and bounded the spectrum is real (see Riesz 
& Sz-Nagy 1952, $107). To investigate the spectrum we must investigate the solution 
of the equation 

(T, - h l )  u = W ,  (4.11) 

when w E L, and h is not real, and then let h tend to a real value. It is readily seen 
(cf. (4.1)) that, when cosa = (Zh)-l is not real, the solution is 

a 

u(x) = -‘s w(LJG(x,O; & O ;  C ;  k cosa)de, (4.12) 
R -a 
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where G( ) is the Green function defined in Appendix B. Suppose first that 
Re (kA)-l < 1 and let A tend to a real value. It is shown in Appendix B that the Green 
function tends to a real limit function except at  a discrete set of real values of A, and 
that this limit function is exponentially small when 1x1 + 00. It is then not difficult 
to show that u ( x )  defined by (4.12) belongs to L, whenever G( ) exists; thus the 
spectrum of T, is discrete when A < k-l .  Suppose next that Re (kA)-' > I ,  
Im @A)-' > 0, and let h tend to a real value, then the Green function can be shown 
to tend to a complex-valued limit function except at a discrete set of values A, but 
now this limit function is wavelike at 00, and u(z)  defined by (4.12) does not belong 
to L,. Thus the spectrum of T, is continuous when 0 < A < k-l .  

5. Existence of a trapping mode 
Since T, is a real bounded symmetric operator it has a spectral decomposition 

(Riesz & Sz-Nagy 1951, $107), and, since the discrete spectrum lies above the 
continuous spectrum in the finite interval k-l < A < M,, the eigenvalues in this 
interval can be found by the familiar variational principles. (For a detailed justifi- 
cation see Weinstein & Stenger 1972.) In particular, the largest eigenvalue in this 
interval is given by 

taken over all real U E  L,, where the maximum is actually attained by the corre- 
sponding eigenfunction. We can now prove the following theorem. 

THEOREM 5.1. Suppose that C(l) lies inside C(,),  and that the eigenvalue problem for 
C(l) has p eigenvalues such that Ail) 2 Ail) 2 . . . 2 A(') > k-l .  Then the eigenvalue 

Proof. Denote the corresponding operators by T(') and T(,). Then A!') = 
max (T%, u)/(u,  u),  j = 1,2 ; also (T(,)u, u) > (T%, u)  by Theorem 3.1. It follows 
that hi2) > Ail). For let the corresponding eigenfunction for C(l) be denoted by up). 
Then 

problem for has at least p eigenvalues, and A?) > Ad) P when s = 1,2, . . . , p .  

(T(l)up), uil)) < (T(2)up), up)) hi') = 
(up), up)) (up ,  up') 

The corresponding inequalities for the higher eigenvalues follow from the familiar 
minimax generalization of this argument (Courant & Hilbert 1931, chapter 6). The 
details are omitted. 

THEOREM 5.2. Suppose that C is  any submerged contour enclosing a j n i t e  area. Then 
there exists at least one trapping mode. 

Proof. Choose a point P inside C, and consider circles (C(l)(R)) with centre P and 
radius R. It is known (Ursell 1951) that there is at least one trapping mode for such 
circles provided that R is sufficiently small; R < R,(P) say. Now choose R, < R,(P) 
so that C(l)(R,) lies inside C. The existence of a trapping mode now follows from 
Theorem 5.1. An alternative proof can be based on Jones (1953) where the existence 
of a trapping mode is shown for a wide class of curves C including circles. In Jones's 
work it is K = (A)- l  > 0 that is prescribed and the existence of an eigenvalue k that 
is deduced; k = K,(K), say. Also K,(K) > K for all K ,  and K,  is close to K when the 
radius of the circle is small. We can now deduce that there is a trapping mode when 
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k is prescribed; k = k,, say. Choose K' = (A')-l so that K' < k,, and take the radius 
of the circle so small that K,(K') < k,. Let K increase from K to k,; since K,(K) > K 
it follows by continuity that K,(K) takes the value k, for some value of K between 
K and k,. 
THEOREM 5.3. For any given submerged curve C there are at most finitely many 

trapping modes. 
Proof. Let the fluid domain D be dissected into domains D(l), D@), D@) by vertical 

lines x = a and x = b, as in Theorem 3.2. In  the domain D@) of finite horizontal extent 
all the eigenvalues must be discrete; let them be denoted by A\2), A t ) ,  . . . , (where 
Ag)+O when m+ a), with corresponding eigenfunctions via), wi2), . . . . Then it is easy 
to show that 

J: v P ) v ~ )  dz = 0 when AP) + A:). 

We shall normalize so that 

for all p and q. For any d 2 ) ( x )  (with a < x < b) write 

8 

@(x) = X am v$) + Q1, where am = (d2), Vm (2) 
1 

and where VPJ, is orthogonal to ~g) ,  m = 1,2,. . . , s. Let the operator analogous to 
T for the domain be denoted by T@). Then 

T(2)vg) = - $0 = A ( 2 ) ~ ( 2 ) .  
m m  

8 
Thus T ( 2 ) ~ ( 2 )  = a, A:) vg) + T(2) Vpjl 

1 

and 

since ( VZl, ~ 2 ) )  = 0 and 

(T(2) V(2) ~ ( 2 ) )  = ( 84-1, T(2)vg)) = @( Vpdl, v$)) = 0 
8+1, m 

(T(2) V@) 8+19 V z l )  < 
8 

Also Viyl, Viyl) = A?J1(d2), 0 )  -A?J1X af 
1 

8 

and so 

Consider next the domain and the potential @I, see Theorem 3.2. Since 
Clq.P)/ax = 0 when x = b the boundary-value problem for gP) can be solved by Fourier 
cosine transforms. The calculation is similar to the calculation in Theorem 4.1; the 
details are omitted. We thus find that 

(T(2)w(2), d2)) < AP)l(~(2),  d2) )  +x (A$) -hi'&) a t .  (5.3) 
1 

(T(3)v(s), ~ ( 3 ) )  < k-l(V(S), ~ ( 8 ) )  (5.4) 

and similarly that 
(T(1)~(1), &)) < k-l(V(l), ~(1)). 
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According to Theorem 3.2, 

and therefore 
(Tw, v) < (T(l)v(l), dl)) + (T(*)w(*), d*)) + (T(%@), da)), 

8 

(Tw, W )  < k-'(dl) ,  dl)) + k-'(d*), da)) + APjl(d*),  d*))  + r, (A$$ -A21) (w(*), w$))*. 
m-1 

(5.5) 
Theorem 5.3 now follows from the following theorem. 
THEOREM 5.4. Suppose that s is chosen so thut A$$ < k-' < A$a). Then there are at 

most s trapping modes. 
Proof. Suppose that there are (s+ 1) trapping modes vl, wa, . . . , choose the 

combination y = ,:+lB,vp so that (y, v$)) = 0 when m = 1,2, . . . , 8. This is possible 
because there are s equations in (s+ 1) unknowns. From (5.5) we now have 

(5.6) (Ty, y) < k-l(y(l), y(l)) +Aiy1(y(*), y@)) + k-'(y@), y@)) < k-l(y, y). 

(Ty,y) = (r,P,Tvp,ZPqvq) = (r,~A,P,v, ,Wgvq)* 

On the other hand we have 

It is however easy to see that (up,  vq) = 0 when Ap 9 A,; we choose (vp, wq) = &,*. Then 
(Ty, y) = Z:+l A,& and similarly (y, y) = Z:+l&, and therefore 

(TY,Y) > k-'(y,y), (5.7) 

since A, > k-' for all trapping modes. The inequalities (5.6) and (5.7) are contra- 
dictory, and Theorem 6.4 follows. This concludes the proof of theorem 5.3 which is 
similar to the proof of Theorem 1 of Jones (1953). 

Theorem 5.2 has shown that there is at least one trapping mode, while Theorem 
5.4 has given an upper bound for the number of trapping modes. If the existence of 
two or more trapping modes could be proved for a certain curve C it  would then be 
possible to prove the existence of at least the same number of modes for all curves 
enclosing C, by Theorem 5.1. At present the only example for which the number of 
trapping modes is exactly known is the sloping beach (Urselll952) which is unsuitable 
because the boundary is of infinite length (see however $7 below). 

6. Extension to finite depth 
So far it has been assumed that the depth of the fluid is infinite but the same 

arguments remain applicable to finite constant depth h, provided that it can be shown 
that in fluid of finite constant depth there is at least one trapping mode for an 
arbitrarily small submerged circle. This, however, follows from Jones (1 953) together 
with a continuity argument. (The corresponding argument for infinite depth is given 
as an alternative argument in the proof of Theorem 6.2.) An alternative proof for 
the small circle can probably be constructed by the method of Ureell(l951). Similar 
considerations apply to humps on the bottom for which the existence of a trapping 
mode was proved by Jones (1963). 

7. Discussion 
The solution for the sloping beach suggests that for curves close to the free surface 

we may expect a large number of trapping modes. The following argument gives some 
support to this suggestion. To fix ideas let us treat only the case of infinite depth. 
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We consider a sequence of circles 

C m  ; z'+ (y-fm)' = ( l - fm) ' ,  

where!, > 1 and where (f,) is an increasing sequence tending to 00. All these circles 
touch the line y = I from below at the point (0, I )  and the circles tend to the line y = 1 
when f, + m. We have seen that for each of these circles the spectrum consists of 
the line segment 0 < h < k-l ,  together with a finite number N ,  of discrete points 
along the segment k-l < h < k-l coth kl (see Theorem 4 . 2 ) .  Theorem 5.1 shows that 
N,,, 2 N , ;  we now wish to show that N,+co.  Denote by T(,) the operator 
corresponding to the circle C,. It can be shown that the operator T(,) tends strongly 
to a limit operator T(co) when m+oo (Riesz & Sz-Nagy 1951, $104). Let us 
additionally assume that T(co) is the operator corresponding to the limit of the circles 
C,, i.e. to the line y = 1, and that the spectrum of T(,) tends to the spectrum of T(O0). 
We now note that the spectrum of the limit problem consists of all the points of the 
segment 0 < A < k-l coth kl, as is easily seen (cf. the proof of Theorem 4 .2 ) ,  and this 
cannot be the limit of the spectrum of T(,) unless N ,  + 00. This argument remains 
applicable, with obvious minor modifications, to trapping modes in fluid of finite 
constant depth. 

Let us next consider trapping modes when the curve C is symmetrical about the 
line z = 0. Evidently each trapping mode must be either an odd or even function of 
x. The mode constructed for the small submerged circle by Ursell (1951) is an even 
mode, and the existence of odd modes for a sufficiently large circle has not yet been 
rigorously proved although such a mode for one such circle has been found 
numerically by P. A. Martin (1985, unpublished note). The preceding argument can 
be used to make the existence of odd modes very plausible. In the proof of Theorem 
4.2 let the normal velocity v(z) be an odd function of x, and let us again consider 
the sequence of circles C,. The spectrum of the limit problem for odd v(x) again 
consists of all the points of the segment 0 c h < k-' coth kl. If there are no odd 
trapping modes the segment k-l < h < k-' coth kl will be empty for all m, and this 
again leads to a contradiction. In fact this argument shows that the number of odd 
modes, like the number of even modes, tends to 00 when m+ 00. 

The argument of the present paper may possibly be extended to submerged bodies 
that are not cylindrical. We have seen that for a cylinder there is at  least one trapping 
mode which is antisymmetrical about the plane z = x / 2 k .  Let the cylinder be 
expanded into a submerged non-cylindrical surface which is symmetrical about 
z = x / 2 k ,  and let us consider modes which are antisymmetrical about z = x / 2 k .  The 
modified Helmholtz equation (2 .1)  must now be replaced by 

but the spectrum is still discrete in a certain interval and by Kelvin's theorem it 
contains at least one point. This argument suggests that there is at least one trapping 
mode (antisymmetrical about z = x / 2 k )  for any submerged sphere with its centre on 
z = ~ / 2 k .  

Evans & McIver (1984) have studied trapping modes over a rectangular shelf of 
finite length lying on the bottom of fluid of finite constant depth. They use Jones's 
formulation of the problem, i.e. they treat K as a prescribed parameter, and they 
can thus give both upper and lower bounds for the number of trapping modes. They 
also solve this problem numerically by solving a singular homogeneous integral 
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equation of the first kind and find that Jones’s bounds are very effective : the number 
of trapping modes estimated by them differs by at most one from the correct number. 
However, in Jones’s problem the prescribed parameter is K and the corresponding 
values of k are to be found, whereas in our problem the prescribed parameter is k 
and the corresponding values of K are to be found. Thus a direct comparison of 
Jones’s results and our results is not possible. McIver & Evans (1985) have also made 
a numerical study of the submerged circle by the method of Ursell (1951); trapping 
modes exist whenever a certain infinite determinant vanishes. Again it is the 
parameter K that they treat as prescribed. 

Another approach to the problem of trapping modes has recently been put forward 
by Aranha (1986). Aranha obtains an equation of the form 

P(A,k)u = 0 (7.1) 

(cf. (2.4)) but not of the form (T-hl)u = 0. Thus the spectral theory of self-adjoint 
operators and the variational principle of 5 5 above are not applicable to (7.1 ) . I have 
not been able to follow Aranha’s argument which is given only in outline, but his 
conclusions, which are similar to mine, led me to the present re-examination of the 
problem of trapping modes. 

Appendix A. Construction of the Green function g(z, y; E,  0; C) for infinite 
depth 

The function g(z, y; 6, 0; C) satisfies the modified Helmholtz equation 

in the fluid, with the boundary conditions 

and 

_ -  a’ - 0 when y = 0 except at ( E , O ) ,  
a Y  

(A 3) g+O whenz2+y2+m, 

3’ - = 0  onC; 
an 

the function g has a source singularity at (5, 0), i.e. 

g(z,O; & O ;  C)-Ko{k((z-E)2+y2):} is bounded near (z, y) = ( 5 , O ) .  
Here 

(A 5) 

Ko(Z) = IOw exp (-2 coshp) dp 

is the usual Bessel function, such that Ko(Z) - (xl2Z)f e-z when Z+co and 
Ko(Z)  - -1ogZ when Z+O. To construct this Green function we consider 

g*(z, y ; E,  0 ; C )  = Ko{k((z - 0 2  + y2)iI 

+fW) [K,{k((z-X(~))~+(y- Y(~))~)t}+K~{((x-X(s))~+(y+ y(~))~):}Ids, (A 6) 

where s is the arc length along C,  where the points of C have coordinates X ( s ) ,  Y(s), 
and where m(s) is to be determined. Evidently the function g* satisfies all the 
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conditions except the condition on C, and this is also satisfied if m(s) can be chosen 
so that, when (z,y) = (X(s’ ) ,  Y(s’)) ,  we have 

a -- Ko{(k(z - Ey y”i} = - xm(s’) an 

This is a Fredholm integral equation of the second kind. To prove that it always has 
a unique solution we need to show that the corresponding homogeneous equation has 
no solution except m(s) = 0. The proof of this result is similar to the proof of the 
corresponding result for the Helmholtz equation 

see e.g. Ursell(i973, $2). The homogeneous equation has a non-trivial solution only 
when x2 is an eigenvalue of the interior Dirichlet problem. Since these eigenvalues 
are known to be positive and we are concerned with the modified Helmholtz equation 
(A 1) it follows that (A 7) can always be uniquely solved. This concludes the proof 
of the existence of the Green function for infinite depth. 

For finite depth the function 

K , , { ( ( z - ~ ) a + y 2 ) f }  = s,” exp(-ky coshp) cos{k(z-E) sinhp}dp (A 8) 

is replaced by an expression of the form 

g1@,y; 670; c; h) = K,{k((z-E)2+yz)4 

+JomA(p) cosh(ky coshp) cos{k(x-6)  sinhp}dp (A 9) 

where A&) is chosen so that agJay = 0 when y = h, whence 

- k sinh p exp ( - kh cosh p )  + k sinh pA (p) sinh (kh cosh p)  = 0, 

i.e. A ( p )  =exp(-khcoshp) 
sinh (kh coshp) ‘ 

Evidently %Jay = 0 when y = 0. The sum of the two Bessel functions in the kernel 
is similarly modified and the construction of the corresponding Green functions for 
finite depth can be completed as before. 

Appendix B. Construction of the Green function G(z, y; 5 , O ;  C; K )  for 
infinite depth 

function g(x, y;  6 , O ;  C), but (A 2) is replaced by the boundary condition 

aG 
KG+- = 0 when y = 0. 

This Green function satisfies the same equations (A i), (A 3), (A 4) as the Green 

(B 1) 
aY 

It is assumed that K is not real, and that Re K < k and we shall write K = k cos a, 
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where Re (cosa) < 1. When C is absent the potential of a source singularity at ( f , O )  
subject to (B 1) is given by G,(x, y ;  f , O ;  K ) ,  where 

i.e. by 

exp(-k coshp) cos{k(x-f) sinhp}dp 

= -kjo* coshp exp(-ky coshp) cos{k(z-f) sinhp}dp, 

see Ursell (1968, 92). Thus 

exp ( - k y  coshp) cos{k(x- f )  sinhp}dp. (B 2) cosh y - cos a 

It can be shown that 0, is exponentially small at 00. We can also construct 
the potential Q2(x,y; X, Y; K) of a submerged source singularity 
K , { k ( ( z - X ) ' + ( y -  Y)'))t} at (2, y )  = ( X ,  Y ) .  We find (see Ursell 1951, equation lo), 
that 

G&,y;  X; Y )  = K O { k ( ( z - X ) ' + ( y -  Y)')+} 

* coshp+cosa 
+ Jo cosh p- cos a 

exp{-k(y+ Y) coshy} cos{k(z-X) sinhp}dp. (B 3) 

We note that evidently the denominator cosh p - cos a = coshp - (K/k) in (B 2) and 
(B 3) does not vanish. To construct the Green function 0(z, y ;  f ,  0 ;  C ;  K) we write 

0 ( x , y ; f , O ; C , K )  = a , ( z , y ; f , O ; K ) + $  ~ ( 8 ) Q ' ( z , y ; x ( 8 ) ,  Yb);K)ds 034) 
C 

where M(8) satisfies the Fredholm equation of the second kind 

a a 
an f an 

- - G , ( X , ~ ;  f , O ;  K )  = - d f ( 8 ' ) +  M ( 8 ) - G 2 ( z , y ;  x(8), Y(8);  K)d8 (B 5) 

when (x, y )  = (X(8'), Y(8')). This equation has a unique solution unless the Fredholm 
determinant vanishes, in which case there is a function M0(8) + 0 such that 

a 
- s d d , ( 8 ~ ) + S ~ 0 ( s ) ~ ~ 2 ( z ,  y ;  X(8) ,  Y(8); K)d8 = 0 

when (2, y )  = (X(8'), Y(8')); but this is impossible unless K is real. For consider the 
Helmholtz potential 

Y(x, Y )  = ( jJfo(8)  0,@, Y ;  X ( 4 ,  Y(S), K )  d8, (B 7) 

which evidently satisfies the boundary conditions 

ay 
KIP+- = 0 when y = 0 

aY 

- 0  onC, 
a y  -- 
an 

and 
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and which is exponentially small at a. Let Y* denote the complex conjugate of Y, 
then by Green Theorem 

- I Y* an ds = Ij Y*V2 Y dx dy + J's IV !Pl dx dy , 
aY 

i.e. 

Thus, if K is not real, we must have Y(z, y) = 0 outside C. Now consider the potential 
Y(z, y) defined by (B 7) for points (2, y) inside C ;  by an argument similar to the 
argument quoted in Appendix A we can now show that Y(z, y) = 0 in C ,  and it follows 
that Mo(s) = 0, a contradiction. It follows that K must be real if the Fredholm 
determinant is to vanish. Since ReK < k the kernel of the integral equation is 
analytic in K (because coshp-cosa does not vanish), therefore the Fredholm 
determinant is also analytic in K and can vanish for at most a discrete set of values 
of K. If there are such zeros then the construction for G fails but the function Y given 
by (B 7) is then the potential of a trapping mode. It follows that the spectrum is 
discrete when K < k, i.e. when k-' < A. By a similar argument we can show that the 
spectrum is continuous when k < K. For suppose that Re K > k and Im K > 0, then 
the integrands in the expressions for the source functions GI and c f ,  have a pole above 
the real p-axis which tends to the real axis when K tends to a real value. Let the 
contour of integration in the p-plane be deformed to pass below the real p-axis near 
the pole. It is then evident that in the limit when K is real the functions c f ,  and G, 
tend to complex-valued limit functions which are analytic functions of K. (When K 
approaches the limit from below the corresponding limit functions are the complex 
conjugates.) The construction of G now proceeds as before and can fail for at most 
a discrete set of real values of K. It is evident, however, that the behaviour of G is 
wavelike when IxI+ a, and that therefore the function u(z) defined by (4.12) does 
not belong to L,. It follows that the spectrum is continuous when K > k, i.e. when 
0 < h < k-l. The construction for finite depth h is similar, thus the potential of a 
source singularity a t  ( & O )  now has the form 

coshp 
exp (-ky coshp) cos{k(z-~) sinhp}dp 

' h  = Jo cosh p - cos a 

+~om{B(p)  cosh(ky coshp)+C(p) sinh(ky coshp)} cos{k(z-6) sinhp} dp, (B 8) 

where B(p)  and C@) are chosen so that 

Gh = 0 when y = 0 

a 
a Y  

and -G,  = 0 when y = h; 

the potential for a submerged source can be constructed in the same way, and the 
Green function can then be obtained by solving an integral equation corresponding 
to (B 5 )  above. The denominators in the source potentials are found to contain a 
factor 

cosa cosh (kh coshp) - coshp sinh (kh coshp), 
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and it follows that the spectrum is discrete when h > (k tanh kh)-' and continuous 
below this value where we note that 

(k tanh kh)-' > k-l 

The details of these calculations are lengthy but straightforward and are omitted. 
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